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ABSTRACT 

The maximal ideals in two algebras of operator valued analytic functions in 
the unit disc are described. 

Let N be an n-dimensional Hilbert space, where d i mN  = n < m .  We denote 

by H°°(N N) the Banach algebra of all norm bounded N-operator valued ana- 

lytic functions in the open unit disc with the norm defined by 

II z = Sup ]l A(z)I I, 
l--I<a 

By A(N,N) we denote the subalgebra of all functions having a continuous 

extension to the closed unit disc. H ~ and A will denote the corresponding 

scalar algebras. 

It is expected that the maximal ideal structure of these algebras reflects the 

maximal ideal structure of the corresponding scalar algebras as well as that of 

B(N) the algebra of all (bounded) linear operators on N ,  and this is confirmed. 

Proofs will be given only for the algebra H~(N, N). The corresponding theorems 

and proofs for A(N,N) differ only slightly by being somewhat simpler as all 

complex homomorphisms of  the scalar algebra rise from evaluation at points 

of the closed unit disc. 

By ~ ' ( H  ~) we denote the maximal ideal space of H °° . For each element ~b of 

J/C'(H°°), ~b will also denote the corresponding complex homomorphism of H ~°. 

H °° we have a natural involution given b y f  ~ fwheref(z) = f (2 ) .  This generalizes 

to H~(N, N) by .~(z) = A(2)*. The involution in H °° is reflected by a conjugation 

in the maximal ideal space. For q5 ~ J{ (H ~) we define ~ by qS(f) = ~b(f). Ob- 

viously ~ ~ ~ ' ( H  ~°) and ~ = ~b. 

For  d~ ~ Jg(H~), A ~ H~(N, N) (a(A(z)x,y) defines a bounded bilinear form 
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in N .  Thus there exists a unique linear operator in N ,  which we denote by ~ , (A)  

such that 
dp(A(z)x, y) = (apg,(A)x, y) 

(i) (I), is a norm decreasing homomorphism of H°°(N N) onto THEOREM 1. 

B(N). 
(ii) **(X) = ¢~(A)*. 

PROOF. (i) The linearity of  the map ~ ,  is obvious. For a constant operator 

valued function C it is trivial to check that * , ( C )  = C and similarly for f ~  H °° 

and C a constant operator we have *4,(fC) = dp(f)C. 
Now let {ei[ i = 1,..-, n} be an o.n. basis in N .  Let Eij be the linear operator 

that is defined by 

E,jek = 5~kei, k = 1,..., n, and let a~j = (Aej, ei). 

Then clearly A ~ H ~ ( N , N )  can be written as ~d=aaijEij and alj~H ~. If  
n B = ~p.q=lbpqEvq then 

AB = ~ ~ aijbpqE~jEpq 
i , j = l  p,q=l 

= aijb~q E~q 
i , q=l  j =  

as E~jEp~ = 5pjE~q 
Therefore by linearity we have 

i , q = l  j = l  

= ~ ~ dp(aljbja)E,, = ~ ~ dp(ai,)dp(bjq)E,, 
i ,q=l  j = l  ~ ,q= l  j = l  

= (~,(A)a~,(B) 

Here we used the fact that $ is a homomorphism of H ~° . 

Now we note that 

I(*,(A)x,Y)] = I*(Ax, y)[ <-II011" Sup [(A(z)x,y) I 
Izl<l 

_<_ Sup II A(z)II'll x II y'tl II = 11A II ~" II x II" II Y II. 

Hence II **(a)II = Supj ~x~ =~t,'~, =1 I(*0(a)x, Y) I --< II A II ~.  It is clear however that 
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(~4,(.4)x, y) = (a(A(z)x, y) = ~b(a(2)*x, y) 
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= (9(x,A(~.)y) = ~(x, A(z)y) = ~(A(z)y, x) 

= (¢b~(A)y,x) = ( ~ ( A ) * x , y ) .  

If we consider for points 2 in the open unit disc the homomorphism tkx of 

evaluation at it then 

(d#~,~(A)x, y) = 43~(Ax, y) = (a(2)x, y) 

as ~+~(A) = A(;~). Therefore it seems natural to write A(qS) = ~o(A) for every 

~ rig(H°°). 

Given an invertible element R of  B(N) the map ~o,n of H°°(N, N) onto B(N) 

is defined by cb+,R(A) = R-x~4,(A)R. Obviously ~ , R  is also a homomorphism, 

though its norm is generally larger than one. 

The following is a converse to Theorem 1. 

THEOREM 2. Let • be a non-trivial homomorphism of H°°(N,N) into B(N) 

then there exists d?~ ~ ( H  °°) and an invertible element R of B(N) such that 

PROOF. B(N) is naturally embedded in H°°(N, N) via the constant functions 

thus ~ restricted to B(N) is a non-trivial homomorphism of B(N) into itself hence 

it is of the form ¢,(C) = R-~CR for some invertible R in B(N). Correspondingly 

f ~ f I  is natural embedding of H °° in H°~(N,N). Since f l  is in the center of 

H°°(N,N) we have for each A ~ H°°(N,N). 

• ( f ) ~ ( A )  = ~ ( A ) ~ ( f ) .  

But as • is onto B(N) it follows that ~ ( f )  is in the center of  B(N),  hence of  the 

form ~z I . The map ~y: H ~ o  C is a complex homomorphism of  H ~°. Therefore 

there exists a qS~./~'(H ~°) such that ~s = qS(f). Now as in Theorem 1, 

A = ]~ ~",j = 1 aijEij implies 

• (a) = ~ ~(aij)~(Eo) = ~ (a(aij)R -1 El jR = R -1 ~ (o(a~j)EijR 
~, j  = t i , j  = 1 i , j  = 1 

= R-a~o(A)R = ~ .R(A) .  

THEOREM 3. A subset M of H~(N ,N)  is a maximal left, right or two sided 

ideal if  and only if it is of the form {AIA(c~)x = 0}, {A[A(dc)*x = o} or 
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{A]A(~b) = 0} respectively for some ~ )~Jz (n  ~) and a non-zero vector 

x i n N .  

P~ooF. The maximal left, right and two sided ideals in B(N) are of the form 

{BIBx = 0}, {BIB*x = 0} and {0}, therefore their inverse images under the 

homomorphism Oe,~ are corresponding maximal ideals in H~(N, N). 

Conversely let M be a maximal left ideal in H~(N,N) and assume 

M # {A ] A(c~)x = 0} for all 4) e d[(H)~°and 0 # x e N.  Without loss of gener- 

alitywe may assume II x II = 1. We will show that M = H~(N,N) .  

For each pair (~b, x),  ~ e ~'(H°°),  x e NII x 11 = 1 there exists an element of 

M ,  denoted by A4,,x such that Ao,~((o)x # 0. Since A4,,x(O)t is a continuous func- 

tion of (0, t) e ./¢[(H ~) x BN, where BN is the unit ball in N,  there exists an open 

neighborhood Uo,x of (4),x) in the product space dg(H ~) x B N such that Ae.~ 

has no zeros in U,,~. {U,,~[ q~e.////(H°°), x ~ N  [I x I{ = 1} is an open cover of 

the compact space d/(H °°) x B N and thus has a finite subcover {Ue,~, I i = 1,.--, p} 

Thus ~ ~v= t [1A,,,~,(~k)x [I for all (O,x)e  ~ ' ( H  °°) X Bu By continuity there exist 

a (5 > 0  such that E L,  IIA,,.,,(O)x}I >_ ~ and in particular we have 

]~ ~=1 ti A4,,~,(z)x t] > 6 for all z in the open unit disc and vectors x of norm one. 

We invoke now a matrix generalization of the corona theorem [1, Theorem 3.1] 

which implies the existence of Bi ~ H~(N, N) such that 

P 

]g B,(z)Ag,,,,,(z) = I or I ~ M and 
i - - -1  

hence M = H~°(N,N). Similarly for right ideals. 

For a maximal two sided ideal M,  let M s be an extension of M to a maximal 

left ideal which by the foregoing is of the form M1 = {AIA(¢b)x = 0}. Since M 

is two sided it follows that M c  {A ] A(~b) = 0} and by maximality we must have 

equality. 

REMARK. In proving the corresponding theorem for the algebra A(N,N) 

we use the following theroem whose proof is exactly analogous to the proof of  

Theorem 3.1 in [1]. 

THEOREM 4. a) Given A i~A(N ,N) ,  i = 1,. . . ,p then a necessary and suf- 

ficient condition for the existence of B i ~ A(N, N) such that Y~ ~= 1 Bi(z)Ai(z) = I 

is 
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inf{i=l ~ ]IAi(z)xl[ , ][xl[ =1,  x~N}>O 

for all z such I z[ <= 1. 

b) A necessary and sufficient condition for the existence of B i ~ A ( N , N  ) 

such that 

p 

Ai(z)Bi(z) = 1 
i = l  

is 

i nf {i=, ~ []Ai(z)*x I1 x ~ N ,  

for all z such that Iz[ ~ 1. 

II x N = 1} > 0 
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